

EPSILON E31.5 TOOL CHANGE SYSTEM

95619, Rev 00

March 31, 2016

648 Saratoga Road Glenville, NY 12302 USA Phone: 518 384 1000 Fax: 518 384 1200 www.appliedrobotics.com

REVISION

Revision	Date	Author	Description
00	3/31/2016	SC	Initial Release

All rights reserved. Copyright © 1986-2016 Applied Robotics Inc.

The use of this document is reserved exclusively for the use of Applied Robotics Incorporated customers and personnel. The information and drawings contained herein are the sole property of Applied Robotics Incorporated and shall not be divulged to any third party without the prior written consent of Applied Robotics Inc. The information in this document is subject to change without notice. **Applied Robotics makes no warranty of any kind with regard to this user's guide,** including but not limited to, implied warranties or fitness for a particular purpose. Applied Robotics Inc. shall not be liable for any errors contained herein or for incidental or consequential damages in connection with the performance or use of this material.

CONTENTS

1 LIFETIME GUARANTEE	. 5
2 PRECAUTIONS	. 6
3 SYSTEM DESCRIPTION	. 7
3.1 ROBOT ADAPTOR	. 8
3.2 TOOL ADAPTOR	. 9
4 TECHNICAL SPECIFICATIONS	10
5 INSTALLATION	11
5.1 ROBOT ADAPTOR INSTALLATION	11
5.2 TOOL ADAPTOR INSTALLATION	
5.3 CONNECTING THE AIR SUPPLY	15
5.4 COUPLE & UNCOUPLE SIGNALS (OPTIONAL)	16
5.5 CONNECTING USER PNEUMATIC PORTS	17
6 GUIDE TO OPERATION	
6.1 INITIAL TEST	19
6.2 PROGRAMMING THE COUPLE AND UNCOUPLE POINTS	20
6.3 RECOMMENDED SEQUENCE OF OPERATION	23
7 TROUBLESHOOTING	
7.1 TECHNICAL SUPPORT	29
7.2 TROUBLESHOOTING GUIDE	
7.3 TROUBLESHOOTING FAULT TREE	30
7.4 MANUAL UNCOUPLE	31
8 MAINTENANCE	32
8.1 PREVENTIVE MAINTENANCE	
8.1.1 Lubrication	34
8.1.1.1 Robot Adaptor	34
8.1.1.2 Tool Adaptor	35
8.1.2 Visual Checks	36
8.1.2.1 Robot Adaptor	36
8.1.2.2 Tool Adaptor	37
8.1.3 Checking Wear of the Cam Locking Mechanism	37
9 SPARE PARTS	40
10 SPARE PARTS REPLACEMENT	41
10.1 ROBOT ADAPTOR	41
10.1.1 Locating/Alignment Pins	41

	10.2.1	Locking Ki	·9 · · · · · · · · ·		 	 	 	10
	10.2.2	Locating B	ushing		 	 	 	. 44
11	INFO	RMATIONA	_ DRAWIN	GS	 	 	 	. 45

1 LIFETIME GUARANTEE

APPLIED ROBOTICS extends a lifetime guarantee to the components that make up the operating cam locking mechanism of the Epsilon Tool Changer. The following components are covered under APPLIED ROBOTICS Lifetime Guarantee.

PART NUMBER	DESCRIPTION
1507-C65N	PISTON, ROBOT
0104-C18N	CAM, ROBOT
48318	PIVOT PIN, ROBOT
1507-C76N	RING, CAM RETAINER

APPLIED ROBOTICS warrants the Epsilon Tool Changer cam locking mechanism for the lifetime of the product against manufacturer's defects in materials and workmanship. Additionally, APPLIED ROBOTICS warrants the cam locking mechanism against wear that results in the Epsilon Tool Changer to lose repeatability and precision during the docking sequence of operation (Section 8.1.3).

CONDITIONS OF THE WARRANTY:

Products shall have been subject to only normal use and service as instructed in this manual and shall not have been misused, neglected, altered, improperly set up or otherwise damaged; and, there shall be no evidence of tampering or deliberate misuse or destruction.

Defects to APPLIED ROBOTICS products will be determined solely by APPLIED ROBOTICS and not by any representative or distributor of or for APPLIED ROBOTICS. Upon determination of a defect, APPLIED ROBOTICS sole obligation will be to provide replacement material for the defective part(s). APPLIED ROBOTICS is not liable or responsible for costs borne from lost production or labor related costs for repairing the defective part(s).

Any claim against APPLIED ROBOTICS for defects in material or workmanship must be in writing. APPLIED ROBOTICS must authorize the return of any allegedly defective part before it is returned. The party making the claim must prepay all shipping and transportation costs. APPLIED ROBOTICS will not accept charges for parts purchased unless the conditions of the warranty have been satisfied.

No APPLIED ROBOTICS representative or distributor is authorized to assume for APPLIED ROBOTICS any other obligations or liabilities in connection with the product, or alter the terms of this warranty in any way.

APPLIED ROBOTICS shall not be liable for damages, including special, incidental or consequential damages arising out of or in connection with the performance of an APPLIED ROBOTICS product or its use by the owner.

2 PRECAUTIONS

READ MANUAL

Do not start, operate or service machine until **you read and understand operator's manual.** Failure to do so could result in serious injury.

HAND CRUSH NOTICE

Indicates the possibility for a crush force between components during coupling of the Robot and Tool Adaptor.

Indicates a hazardous situation which, if not avoided, could result in death or serious injury.

Indicates a hazardous situation which, if not

avoided, will result in death or serious injury.

NOTICE

Indicates a hazardous situation which, if not avoided, could result in minor or moderate injury.

Indicates a situation which, if not avoided, could result in equipment damage and voiding the manufacturer's equipment warranty.

IGNORING INFORMATION ABOUT POTENTIAL HAZARDS CAN LEAD TO SERIOUS HARM TO PERSONNEL AND/OR DAMAGE TO THE EQUIPMENT, AND MAY RESULT IN THE NULLIFICATION OF THE MANUFACTURER'S EQUIPMENT WARRANTY.

HEED ALL PRECAUTION NOTICES

3 SYSTEM DESCRIPTION

The Epsilon E31.5 Tool Changer provides a strong and reliable method for a manipulator to quickly change between different tools/end-effectors. With Applied Robotics, Inc. modular design, the E31.5 Tool Changer offers the maximum flexibility for any application.

The E31.5 Tool Changer contains two major components:

Robot Adaptor (ER31.5) – Mounts directly to a robot flange utilizing a 31.5mm ISO 9409-1 pattern without the need for adaptor plates (Figure 3-1).

Tool Adaptor (ET31.5) – Mounts directly to a tooling plate utilizing a 31.5mm ISO 9409-1 pattern (Figure 3-2).

The Robot Adaptor and Tool Adaptor lock together by means of a double-acting, pneumatically-driven cam locking mechanism. The three (3) cam self-centering locking mechanism allows for reliable and repeatable operation throughout the life of the tool changer with a unique wear compensating design. As the locking mechanism actuates, the Tool Adaptor is physically connected and disconnected along with any utilities contained in the attached modules.

Figure 3-1. ER31.5 Robot Adaptor

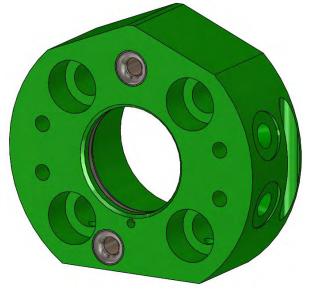
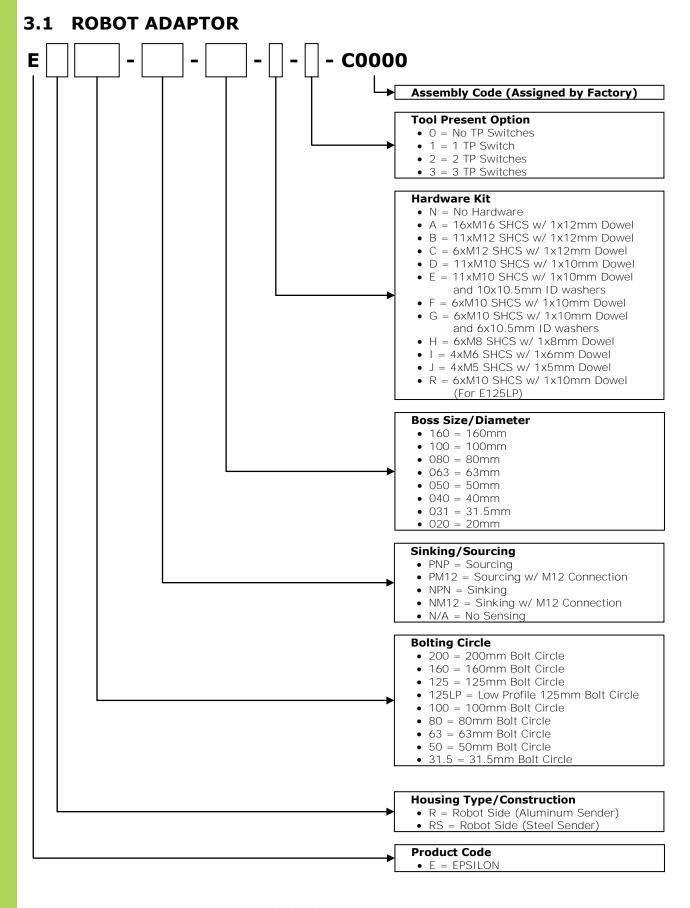
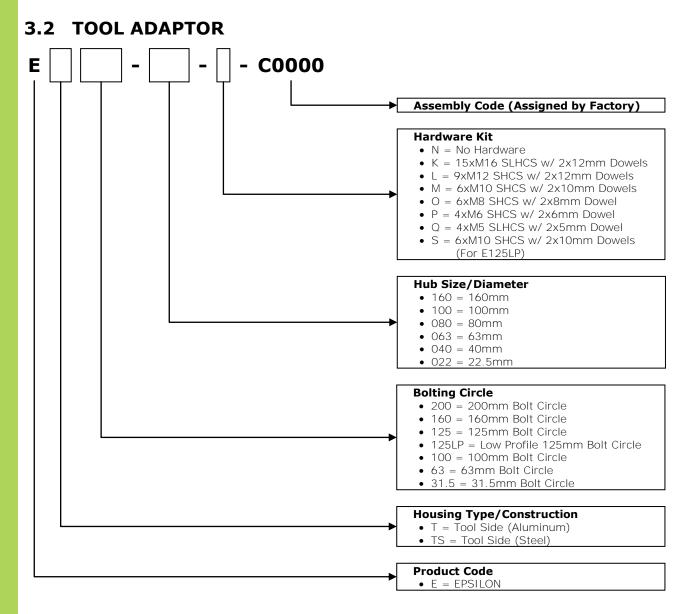




Figure 3-2. ET31.5 Tool Adaptor

TECHNICAL SPECIFICATIONS 4

Table 4-1. E31.5 Technical Specifications

Specificati	on	Metric	English
Payload		10 Kg	22 lb
Maximum Ope (Mx, My)	rating Moment	52 Nm	465 in-lb
Maximum E-St (Mx, My)	op Moment	79 Nm	700 in-lb
Maximum Ope (Mz)	rating Torque	30 Nm	265 in-lb
Maximum E-St (Mz)	op Torque	60 Nm	530 in-lb
Maximum Tens	sile Force (F_T)	934 N	210 lb
Maximum Com Force (F _c)	pressive	4,159 N	935 lb
Diameter		46 mm	1.81 in
Height (Robot and Tool Coupled)		36 mm	1.42 in
Mass /	Robot	0.09 Kg	0.2 lb
Weight	Tool	0.04 Kg	0.09 lb
Positional Repe X, Y & Z axis	eatability	+/- 0.02 mm	+/- 0.0008 in
Operating Tem	perature	5 - 60 °C	40 - 140 °F
Supply Pressure		5 - 7 bar	72 - 101 psi
Couple/Uncouple Voltage (Optional)		10 - 30 Vdc	10 - 30 Vdc
User Pneumatic Pressure Range		0 – 7 bar	0 – 101 psi
User Pneumati	Jser Pneumatic Flow (CFM) **Contact Applications Engineering*		

5 INSTALLATION

5.1 ROBOT ADAPTOR INSTALLATION

The E31.5 Robot Adaptor is designed to mount directly to interfaces utilizing an ISO 31.5mm bolt pattern (ISO 9409-1). The E31.5 Robot Adaptor can mount to manipulator interfaces utilizing M5 hardware. For size, locations, and tolerance information on the E31.5 Robot Adaptor mounting patterns, see APPLIED ROBOTICS drawing number 1507-D63A.

TOOL CHANGER PAYLOAD & MOMENT RATINGS BASED ON USING A MINIMUM OF 4xM5 SCREWS TO MOUNT THE ROBOT ADAPTOR TO THE MANIPULATOR INTERFACE.

Installing the E31.5 Robot Adaptor Using M5 Hardware:

ENSURE THAT THE MATING SURFACES OF THE ROBOT ADAPTOR AND ROBOT FLANGE ARE FLUSH (PLANAR) WHEN FASTENING THE SCREWS.

- 1. Locate the Robot Adaptor to the manipulator mounting flange utilizing the locating boss and one (1) M5 locating dowel (Figure 5.1-1).
- 2. Insert and tighten the M5 socket head cap screws (minimum Property Class 10.9) provided with the Robot Adaptor Assembly. Torque the screws to the robot manufacturer's specification.

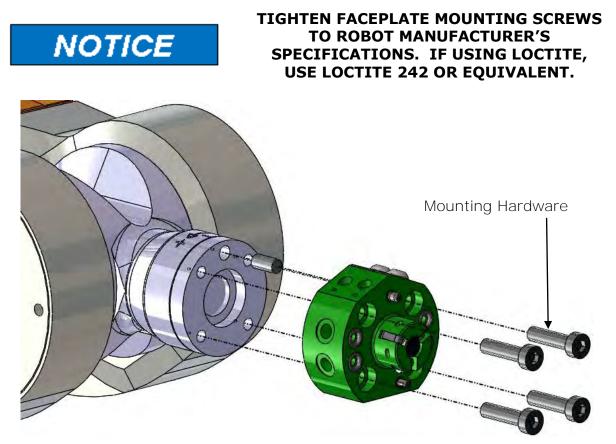


Figure 5.1-1. E31.5 Robot Adaptor Installation w/ M5 Hardware

DO NOT EXCEED THE MAXIMUM OPERATING OR E-STOP MOMENT OF THE TOOL CHANGER WHEN USING A ROBOT ADAPTOR PLATE TO ADAPT TO OTHER BOLTING PATTERNS.

5.2 TOOL ADAPTOR INSTALLATION

The E31.5 is designed to mount directly to customer tooling utilizing an ISO 9409-1 bolt pattern. The Tool Adaptor can be mounted from the top down using M6 hardware on the ISO 31.5mm bolt circle. For size, locations, and tolerance information on the E31.5 Tool Adaptor mounting patterns, see APPLIED ROBOTICS drawing number 1507-D67A.

TOOL CHANGER PAYLOAD & MOMENT RATINGS BASED ON USING 4xM5 SCREWS TO MOUNT THE TOOL ADAPTOR TO THE TOOLING INTERFACE.

If a locating boss/pilot is used on the tool plate to locate the tool to the Tool Adaptor, then the boss cannot protrude into the tool changer greater than 3mm to allow for clearance of the latching mechanism (Figure 5.2-1).

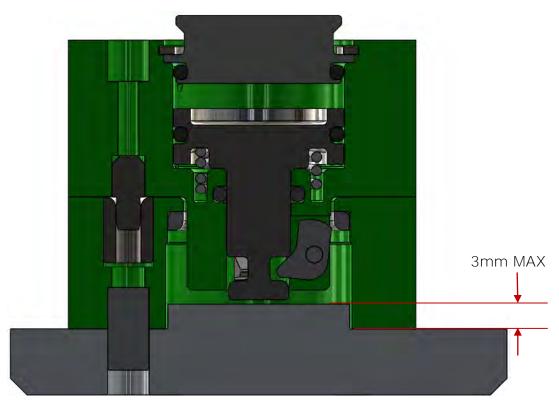


Figure 5.2-1. ET31.5 Tool Adaptor and Tool Plate Installation (w/ Pilot)

Installing the ET31.5 Tool Adaptor From the Top Down:

ENSURE THAT THE MATING SURFACES OF THE TOOL ADAPTOR AND TOOL PLATE ARE FLUSH (PLANAR) WHEN FASTENING THE SCREWS.

- 1. Locate the Tool Adaptor to the tool plate utilizing either the locating hub and one (1) M5 locating dowel, or two (2) M5 locating dowels (Figure 5.2-2).
- 2. Insert and tighten M5 socket head cap screws (minimum Property Class 10.9) through the Tool Adaptor 31.5mm bolt circle. Applied Robotics recommends the use of steel threads in the tool plate and appropriate thread engagement and torque values.

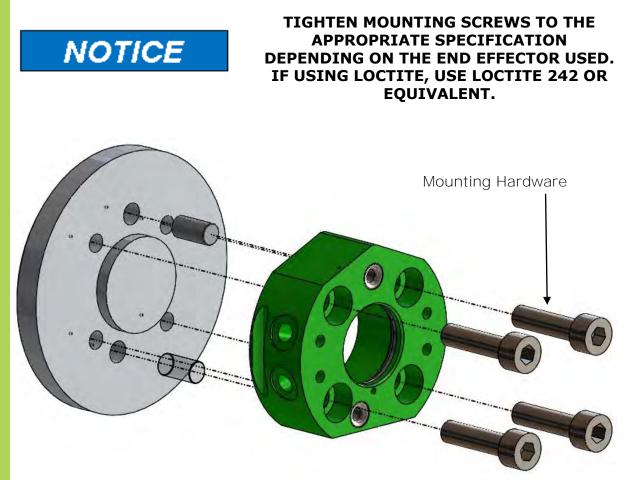


Figure 5.2-2. ET31.5 Tool Adaptor Installation (Bolt Top Down)

DO NOT EXCEED THE MAXIMUM OPERATING OR E-STOP MOMENT OF THE TOOL CHANGER WHEN USING A ROBOT ADAPTOR PLATE TO ADAPT TO OTHER BOLTING PATTERNS.

5.3 CONNECTING THE AIR SUPPLY

The pneumatic supply for the Epsilon Tool Changer can be supplied via directly ported air fittings supplied by the customer (Figure 5.3-1).

PNEUMATIC PRESSURE SHOULD NEVER BE SUPPLIED TO THE EPSILON TOOL CHANGE SYSTEM UNLESS THE POSITION OF THE VALVE SUPPLYING THE AIR IS KNOWN AND HAS BEEN CONFIRMED. FAILURE TO DO SO CAN RESULT IN SERIOUS INJURY OR DEATH FROM A DROPPED TOOL.

THE ROBOT SHOULD NEVER BE RUN WITHOUT AIR PRESSURE BEING SUPPLIED TO THE TOOL CHANGER. PRESSURE TO THE TOOL CHANGER MUST BE AT LEAST 5 BAR (72 PSIG) FOR PROPER OPERATION.

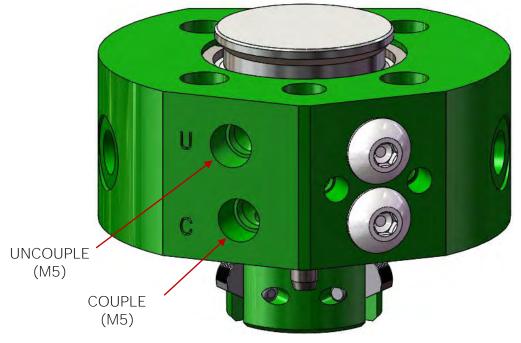


Figure 5.3-1. E31.5 Robot Adaptor Air Supply Ports

Both the couple and uncouple actuation port lines must be installed in order for the Epsilon Tool Change System to function properly. To control air to the different ports, a single solenoid, spring-return, 4-way valve or a double solenoid, 4-way valve can be used.

- IF A SINGLE SOLENOID, SPRING-RETURN, 4-WAY PNEUMATIC VALVE IS USED, THE FOLLOWING MUST BE UNDERSTOOD AND ADHERED TO:
 - IN THE DE-ENERGIZED STATE, THE VALVE MUST PROVIDE AIR TO THE COUPLE PORT ONLY.

IF A DOUBLE SOLENOID, 4-WAY PNEUMATIC VALVE IS USED, THE FOLLOWING MUST BE UNDERSTOOD AND ADHERED TO:

- THE VALVE WILL REMAIN IN ITS PRESENT POSITION UNTIL EITHER THE ALTERNATE SOLENOID IS ENERGIZED OR BY MANUALLY PRESSING THE ALTERNATE SOLENOID OVERRIDE BUTTON (IF APPLICABLE).
- TO CHANGE THE STATE OF THE VALVE, ONE SIDE OF THE SOLENOID MUST BE ENERGIZED AND THE OTHER SIDE DE-ENERGIZED. IF BOTH SIDES ARE ENERGIZED (OR DE-ENERGIZED), THE VALVE WILL NOT CHANGE STATES.
- THE VALVE MUST BE PILOT ACTUATED SO THAT THE POSITION OF THE VALVE WILL NOT CHANGE UNLESS THERE IS AIR SUPPLIED TO THE VALVE.

5.4 COUPLE & UNCOUPLE SIGNALS (OPTIONAL)

Couple and uncouple signals are optional on the E31.5 Robot Adaptor and are provided via flying lead connections (Figure 5.4-1). APPLIED ROBOTICS utilizes proximity switches to provide indication of piston limit positions (couple and uncouple). Switches are preset at the factory and do not require any adjustment for the lifetime of the tool changer.

COUPLE AND UNCOUPLE SENSOR SIGNALS SHOULD BE CONTINUALLY MONITORED TO VERIFY THAT THE TOOL CHANGER IS IN THE PROPER STATE BEFORE COMMANDING THE ROBOT TO MOVE.

Should the switches need to be replaced, see Section 10.1.2.

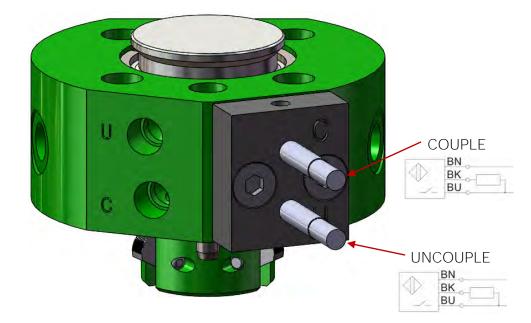


Figure 5.4-1. Couple/Uncouple Signal Interface (Optional)

MAKING CONNECTIONS WHILE UNDER POWER COULD RESULT IN DAMAGE TO THE EQUIPMENT. TO AVOID DAMAGING EQUIPMENT, ENSURE THAT ALL CABLES ARE CONNECTED BEFORE SUPPLYING POWER TO THE EQUIPMENT.

5.5 CONNECTING USER PNEUMATIC PORTS

The E31.5 Tool Changer has 4 available user pneumatic ports to supply air through the tool changer to the specific tool being used. The tool changer must be coupled and be fitted with an o-ring seal for these ports to be operational. Air can be supplied via directly ported air fittings supplied by the customer (Figure 5.5-1).

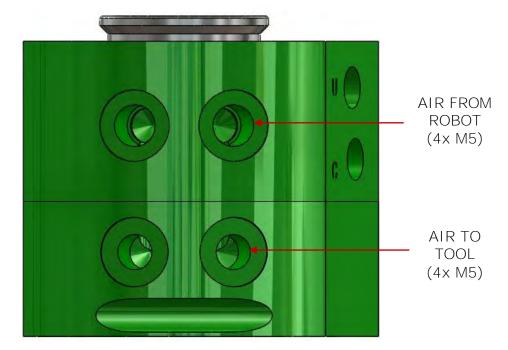


Figure 5.5-1. E31.5 User Pneumatic Ports

6

GUIDE TO OPERATION

6.1 INITIAL TEST

Once the air supply has been plumbed to the couple and uncouple ports, control power is connected to the air supply valve, and the couple and uncouple position sensors are in communication with the robot controller/PLC, perform the following steps to verify the proper operation of the Epsilon Tool Changer.

DURING TESTING, KEEP YOUR FINGERS CLEAR OF THE MECHANICAL COUPLING MECHANISM AND THE COUPLING INTERFACE SURFACES. <u>KEEP OUT OF THE</u> <u>ROBOT WORK ENVELOPE</u> WHEN DRIVE POWER IS ON.

- 1. Verify that the Robot Adaptor is clear of any obstruction and not coupled to the Tool Adaptor.
- 2. Turn on supply air to the control valve and verify that the cams move to the extended position (Figure 6.1-1). If using a single solenoid, spring return, 4-way valve, this will verify that it is plumbed correctly.
- Supply control power to the solenoid valve and supply the signal from the controller/PLC to move the valve to the uncoupled (solenoid energized) position. The cams should retract to the uncoupled position (Figure 6.1-2) and the input from the uncoupled sensor (optional) should be received by the robot controller/PLC.
- 4. Change the state of the solenoid valve by turning off the uncouple signal (solenoid de-energized). The cams should extend back to the couple position and the uncouple sensor (optional) signal should turn OFF (LOW) and the couple sensor signal should turn ON (HIGH) at the robot controller/PLC.
- 5. Repeat steps 3 and 4 several times. The cam action should be smooth and quick.

Figure 6.1-1. Robot Adaptor Coupled (Cams Extended)

Figure 6.1-2. Robot Adaptor Uncoupled (Cams Retracted)

6.2 PROGRAMMING THE COUPLE AND UNCOUPLE POINTS

THE ROBOT SHOULD NEVER BE RUN WITHOUT A MINIMUM AIR PRESSURE OF 5 BAR (72 PSIG) BEING SUPPLIED TO THE ROBOT ADAPTOR.

When programming the "dock" and "undock" points of each tooling, the following steps should be taken:

 Orient the Robot Adaptor and Tool Adaptor so that the centerline axes are aligned and the interface surfaces are parallel. Maintain approximately 15mm minimum separation between the Robot Adaptor and Tool Adaptor interface surfaces (Figure 6.2-1).

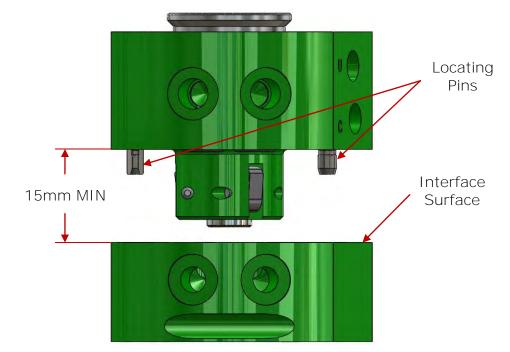


Figure 6.2-1. E31.5 Tool Changer – Docking Orientation

- 2. Energize the solenoid, resulting in an uncoupled (cams retracted) state.
- 3. Rotate the Robot Adaptor so that the locating pins are centered on the bushings in the Tool Adaptor.
- 4. Start to bring the Robot and Tool Adaptors together while visually checking the alignment of the locating pins and bushings. Make lateral adjustments as necessary to center the locating pins to the bushings. Exact alignment is not required; however limit the amount of interference between the locating pins and bushings while docking. Interference between the locating pins and bushings while docking increases wear and decreases the life of the locating pins.
- 5. Stop the motion when the distance between the Robot Adaptor interface surface and Tool Adaptor interface surface are touching or as close as can reasonably be achieved. At this time, any electrical or fluid connections will be made through the use of available side modules. Note that when the interface surfaces of the Robot Adaptor and Tool Adaptor are in contact, the outer edge of the Adaptors should be touching (Figure 6.2-2).



Figure 6.2-2. E31.5 Tool Changer – Docked Position

MINIMIZING THE DISTANCE BETWEEN THE ROBOT ADAPTOR AND TOOL ADAPTOR INTERFACE SURFACES WHEN PROGRAMMING THE DOCK AND UNDOCK POINTS WILL ENSURE OPTIMUM PERFORMANCE OF THE TOOL CHANGER OVER ITS OPERATIONAL LIFE SPAN.

SEPARATION BETWEEN THE ROBOT ADAPTOR AND TOOL ADAPTOR INTERFACE SURFACES, GREATER THAN 1mm DURING DOCKING OR UNDOCKING WILL RESULT IN ADDITIONAL WEAR TO THE TOOL CHANGER AND REDUCE THE OVERALL LIFE EXPECTANCY.

- 6. De-energize the solenoid that controls the air pressure to the couple port. This will couple the Robot Adaptor with the Tool Adaptor.
- 7. Cycle the cams by energizing and de-energizing the solenoid several times to verify that the Tool Adaptor is properly connected and released from the Robot Adaptor. If properly programmed, the Robot Adaptor and Tool Adaptor should not move when the cams are coupled (extended) and uncoupled (retracted).
- 8. Record the position from Step 5 as the "dock" and "undock" coordinates for the Tool Adaptor. Depending on the docking station used, separate dock and undock positions may be required.
- 9. Repeat procedure for each Tool Adaptor used in conjunction with the corresponding Robot Adaptor.

6.3 RECOMMENDED SEQUENCE OF OPERATION

NOTICE

THE EPSILON TOOL CHANGER SYSTEM SHOULD NEVER BE UNCOUPLED UNLESS THE ATTACHED TOOL IS FULLY SUPPORTED IN A DOCKING STATION/TOOL STAND.

The following is a standard sequence of operation for a Robot, Tool Changer, and Tool combination. See Figure 6.3-1 for a graphical representation of this sequence. Note that the **BOLD** indicates a change in status and not all signals may be applicable to your application.

1. The Tool Changer is in the uncoupled state (cams retracted) and in the "Home" position (Tool Changer out of the tool stand with NO tool, all tool stand covers are closed, and air supply is ON).

INPUTS:

Uncouple Signal H	IGH
Couple Signal L(WC
Ready to Couple Signal LO	WC
Tool Present Signal LO	WC
Tool Stand Present SignalLO	WC
Tool Cover Open Signal LO	WC
Tool Cover Closed Signal H	IGH

OUTPUTS:

Uncouple Command	HIGH
Tool Cover Open Command	. LOW
Tool Cover Close Command	. HIGH

2. Open tool stand cover.

INPUTS:

Uncouple Signal	HIGH
Couple Signal	
Ready to Couple Signal	. LOW
Tool Present Signal	. LOW
Tool Stand Present Signal	. LOW
Tool Cover Open Signal	
Tool Cover Closed Signal	LOW

OUTPUTS:

Uncouple Command	HIGH
Tool Cover Open Command	HIGH
Tool Cover Close Command	LOW

3. Move to "Pre-Dock" position (Approximately 15mm above the Tool Adaptor).

INPUTS:

Uncouple Signal	HIGH
Couple Signal	LOW
Ready to Couple Signal	
Tool Present Signal	
Tool Stand Present Signal	LOW
Tool Cover Open Signal	HIGH
Tool Cover Closed Signal	LOW

OUTPUTS:

Uncouple Command	HIGH
Tool Cover Open Command	HIGH
Tool Cover Close Command	LOW

4. Move to **the "Dock" position (See Section** 6.2). Once Robot and Tool Adaptors are within range (~0.75mm or closer), the electrical contacts on the side modules will begin to communicate.

INPUTS:

Uncouple Signal	HIGH
Couple Signal	LOW
Ready to Couple Signal	HIGH
Tool Present Signal	HIGH
Tool Stand Present Signal	HIGH
Tool Cover Open Signal	HIGH
Tool Cover Closed Signal	LOW

OUTPUTS:

Uncouple Command	HIGH
Tool Cover Open Command	HIGH
Tool Cover Close Command	LOW

5. Once in the "Dock" position, Couple to the tool.

INPUTS:

Uncouple Signal	LOW
Couple Signal	HIGH
Ready to Couple Signal	HIGH
Tool Present Signal	HIGH
Tool Stand Present Signal	HIGH
Tool Cover Open Signal	HIGH
Tool Cover Closed Signal	LOW

OUTPUTS:

Uncouple Command	LOW
Tool Cover Open Command	HIGH
Tool Cover Close Command	LOW

6. Move to the "Post-Dock" position. Ensure the pins and bushings on the docking fixture are clear from one another before leaving the docking station.

INPUTS:

Uncouple Signal	LOW
Couple Signal	HIGH
Ready to Couple Signal	HIGH
Tool Present Signal	HIGH
Tool Stand Present Signal	LOW
Tool Cover Open Signal	HIGH
Tool Cover Closed Signal	LOW

OUTPUTS:

Uncouple Command	LOW
Tool Cover Open Command	HIGH
Tool Cover Close Command	LOW

 The Robot performs the specified task with the connected tool. Depending on the cell layout and operation being performed, the Tool Cover may need to be closed to avoid interference.

INPUTS:

Uncouple Signal LOW
Couple Signal
Ready to Couple Signal HIGH
Tool Present Signal
Tool Stand Present Signal LOW
Tool Cover Open Signal
Tool Cover Closed Signal LOW

OUTPUTS:

Uncouple Command	LOW
Tool Cover Open Command	HIGH
Tool Cover Close Command	LOW

8. Return to the "Post-Dock" position (alternatively could identify a "Pre-Undock" position) after completing the task.

INPUTS:

Uncouple Signal	LOW
Couple Signal	HIGH
Ready to Couple Signal	HIGH
Tool Present Signal	HIGH
Tool Stand Present Signal	LOW
Tool Cover Open Signal	HIGH
Tool Cover Closed Signal	LOW

OUTPUTS:

Uncouple Command	LOW
Tool Cover Open Command	HIGH
Tool Cover Close Command	LOW

9. Move to the "Dock" position (alternatively, could identify an "Undock" position) with the tool.

INPUTS:

Uncouple Signal	. LOW
Couple Signal	. HIGH
Ready to Couple Signal	. HIGH
Tool Present Signal	. HIGH
Tool Stand Present Signal	HIGH
Tool Cover Open Signal	. HIGH
Tool Cover Closed Signal	. LOW

OUTPUTS:

Uncouple Command	LOW
Tool Cover Open Command	HIGH
Tool Cover Close Command	LOW

10. Once in the "Dock"/"Undock" position and the weight is fully supported by the docking station, Uncouple the Tool Changer.

INPUTS:

Uncouple Signal	HIGH
Couple Signal	LOW
Ready to Couple Signal	. HIGH
Tool Present Signal	. HIGH
Tool Stand Present Signal	. HIGH
Tool Cover Open Signal	. HIGH
Tool Cover Closed Signal	. LOW

OUTPUTS:

Uncouple Command	HIGH
Tool Cover Open Command	HIGH
Tool Cover Close Command	LOW

11. Move to the "Pre-Dock" (alternatively, could identify a "Post-Undock"

position). Once Robot and Tool Adaptors are separated by approximately 0.75mm, the electrical contacts on the side modules will lose contact and the robot side modules will lose communication with the tool side modules.

INPUTS:

Uncouple Signal	HIGH
Couple Signal	LOW
Ready to Couple Signal	LOW

Tool Present Signal	LOW
Tool Stand Present Signal	LOW
Tool Cover Open Signal	HIGH
Tool Cover Closed Signal L	_OW

OUTPUTS:

Uncouple Command	HIGH
Tool Cover Open Command	HIGH
Tool Cover Close Command	LOW

12. Move back to the "Home" position and close the tool stand cover.

INPUTS:

Uncouple Signal	. HIGH
Couple Signal	. LOW
Ready to Couple Signal	. LOW
Tool Present Signal	. LOW
Tool Stand Present Signal	. LOW
Tool Cover Open Signal	LOW
Tool Cover Closed Signal	HIGH

OUTPUTS:

Uncouple Command	HIGH
Tool Cover Open Command	LOW
Tool Cover Close Command	HIGH

Undocking Cycle Docking Cycle Remove Uncouple Command (Verify Uncouple Signal Goes LOW & Couple Signal Goes HIGH) Close Tool Stand Cover (Verify Tool Cover Closed Signal is HIGH) Apply Uncouple Command (Verlfy Uncouple Signal Goes HIGH & Couple Signal Goes Tool Cover Open Signal is Apply (Verify HIGH TC Moves to Dock/Undock Home Position (Verlify Tool Cover Open Signal is HIGH) FC Moves to Undock Position TC Moves to Dock/Undock Home Position TC Moves to Dock/Undock Home Position TC Moves to Dock Position TC Moves to Pre-Undock Position TC Mov TC Moves to Post-Dock Position ly Uncouple Command fy Uncouple Signal Goes H & Couple Signal Goes LOW) m Specified Task with Connected Tool ves to Post-Undock Position h (TC Out of the Tool vith No Tool, All Tool Covers Closed, & Air Supply ON) to Pre-Dock Positior HIGH) LOW) Uncouple Command #1 Uncouple Command #2 Uncouple Signal Couple Signal Tool Cover Open Command Tool Cover Closed Command Tool Cover Open Signal Tool Cover Closed Signal Tool Present Signal Tool in Tool Stand Signal Tool I D SCM OK Signal 1 SCM "Tool Absent" Signal(s)² SCM "Tool Stand Present" Signal(s) 2 SCM "Coupled Air" Signal(s)²

Page | 28

¹ Customer is required to continuously monitor the SCM OK signal, verifying that the signal remains HIGH throughout the entire operation. If SCM OK signal goes LOW, stop the robot, remove the Uncouple Commands and refer to the Troubleshooting sector 2 Catacator (in all characator) and Discrete Conception (in the sector) and the sector of the conception (in the sector).

² Signals (dual channel) are only available via LED's on ARI's Safety Control Module (SCM). Not available for monitoring by the robot controller.
³ Second Uncouple Command is required when using ARI's Safety Control Module (SCM) and should be applied simultaneously with the first Uncouple Command.

Verify the status of all signals before proceeding to the next step.

- Input/Output HIGH = 1, LOW = 0

- Dotted circles indicate a intermediate state of an actuating cyclinder when neither "Open" or "Close" signal is present.

Figure 6.3-1. Sequence of Operations Diagram

X Applied Robotics

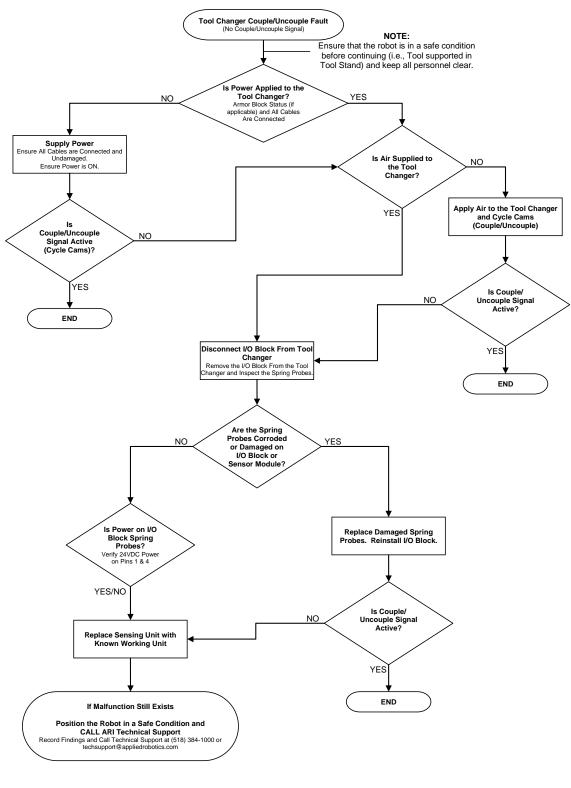
7 TROUBLESHOOTING

7.1 TECHNICAL SUPPORT

If you require assistance, contact APPLIED ROBOTICS Technical Support Department at:

> Phone: +1 518 384-1000 E-mail: <u>techsupport@appliedrobotics.com</u>.

7.2 TROUBLESHOOTING GUIDE


Table 7.2-1. Troubleshooting Guide

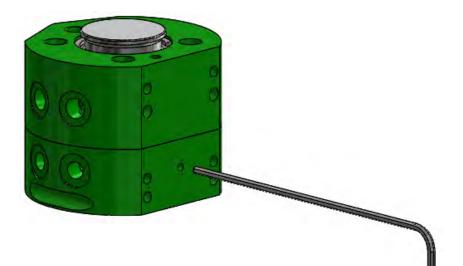
Symptom	Possible Cause	Resolution	
Tool Chapger	Tool Changer not within required distance for coupling (<1mm)	Adjust Robot program to move within the required distance (<1mm)	
Tool Changer Will Not Couple	Electrical connection to the actuation valve has been lost (only if using double-acting solenoid)	Verify all connections are in place and that valve is not damaged and operating correctly	
	Air supply to the Tool Changer has been lost	Verify all air connections are in place and air is being supplied to the Robot cell	
Tool Changer Will Not	Electrical connection to the actuation valve has been lost	Verify all connections are in place and that valve is not damaged and operating correctly	
Uncouple	Tool is not in Tool Stand	Verify the tool is supported in the tool stand and that the Tool Stand Present signal is activated	
	Spring Failure	Replace piston spring	
Tool Changer	Coupled sensing (optional) has failed	Replace sensor puck (See Section 10.1.2)	
Couples, But No Coupled	Cable/Connections supplying signal failed	Inspect cables/connections and replace if necessary	
Signal is Being Received	Air supply to the Tool Changer has been lost (Coupled via the sender spring)	Verify all air connections are in place and air is being supplied to the Robot cell	
Tool Changer Uncouples, But	Uncoupled sensing (optional) has failed	Replace sensor puck (See Section 10.1.2)	
No Uncoupled Signal is Being Received	Cable/Connections supplying signal failed	Inspect cables/connections and replace if necessary	

7.3 TROUBLESHOOTING FAULT TREE

The fault tree provides guidance for troubleshooting a Tool Changer Couple/Uncouple signal fault (Optional).

7.4 MANUAL UNCOUPLE

A feature has been designed into the E31.5 Tool Changer that allows the system to be manually uncoupled in the event that damage occurs that prevents the system from uncoupling under normal means.


ENSURE THAT THE ATTACHED TOOLING IS SAFELY SUPPORTED, PREFERABLY IN ITS TOOL STAND.

The following steps must be followed to ensure that the E31.5 Tool Changer is manually uncoupled in a safe manner:

- 1. Ensure that the attached tooling is safely supported, preferably in its tool stand, so that no damage or personal injury occurs when the tool is released.
- 2. Ensure that all unnecessary personnel are clear of the tooling before going further in this procedure.
- 3. Shut off the air supply to the actuating cylinder. The cylinder must not be pressurized for this operation to be performed successfully.
- 4. Insert a 1.5mm allen wrench (alternatively, a 1.5mm punch may be used) as shown in Figure 7.4-1. This requires any tool side modules to be removed.
- 5. While pushing the cams back with the allen wrench, pull down on the Tool Adaptor to separate the tool from the Robot Adaptor.

WHEN AIR SUPPLY IS OFF, THE COUPLE/UNCOUPLE SIGNALS WILL BE LOST DUE TO THE LACK OF AIR. ONLY MOVE THE ROBOT AFTER THE CAMS HAVE BEEN FULLY RETRACTED.

8 MAINTENANCE

FAILURE TO FOLLOW THE MAINTENANCE SCHEDULE DESCRIBED IN THIS SECTION COULD ALTER OR VOID THE WARRANTY PROVIDED BY APPLIED ROBOTICS, INC.

The following table provides a schedule for preventive maintenance to be performed for the Epsilon Tool Changer.

			٦	Table 8-1. Pr	eventive Ma	aintenance Schedule
					Frequency	of Maintenance
		Every 2 Weeks	250,000 Cycles	500,000 Cycles	750,000 Cycles	1,000,000 Cycles
	Robot Adaptor	Visual Checks (Section 7.1.2.1)		Lubrication (Section 7.1.1.1) & Visual Checks (Section 7.1.2.1)		Lubrication (Section 7.1.1.1) & Visual Checks (Section 7.1.2.1) & Replace Locating Pins if Worn or Damaged & Inspect Piston Spring Functionality and Replace if Necessary ¹
×A	Tool Adaptor	Visual Checks (Section 7.1.2.2)	Lubrication (Section 7.1.1.2) & Visual Checks (Section 7.1.2.2)			Lubrication (Section 7.1.1.2) & Visual Checks (Section 7.1.2.2) & Replace Locating Bushings if Worn or Damaged
ppli			Frequency of Maintenance			of Maintenance
ed Ro		Every 2 Weeks	1,250,000 Cycles	1,500,000 Cycles	1,750,000 Cycles	2,000,000 Cycles ²
X Applied Robotics ¹¹	Robot Adaptor	Visual Checks (Section 7.1.2.1)		Lubrication (Section 7.1.1.1) & Visual Checks (Section 7.1.2.1)		Lubrication (Section 7.1.1.1) & Visual Checks (Section 7.1.2.1) & Inspect the Following Parts for Wear or Damage and Replace if Necessary; Locating Pins, Piston Head, Piston O-Ring, Cam Shaft, Cams. &
	Tool Adaptor	Visual Checks (Section 7.1.2.2)		Lubrication (Section 7.1.1.2) & Visual Checks (Section 7.1.2.2)		Inspect Piston Spring Functionality and Replace if Necessary Lubrication (Section 7.1.1.2) & Visual Checks (Section 7.1.2.2) & Replace Cam Pickup Dowels if Worn or Damaged & Replace Locating Bushings if Worn or Damaged

¹ To test Piston Spring functionality, retract the cams (Figure 6.1-2) using air pressure, then completely vent off all air and ensure that the cams return to the extended position (Figure 6.1-1). ² Continue Lubrication and Visual Checks every 250,000 Cycles. Continue inspecting for wear or damaged components every 500,000 cycles.

8.1 PREVENTIVE MAINTENANCE

8.1.1 Lubrication

Proper lubrication of wear components is essential to maintaining the performance and prolonging the operational life of the E31.5 Tool Changer. Failure to apply proper lubrication could result in increased wear and shorten the life expectancy of the Tool Changer. The following lubricants are approved for use on the E31.5 Tool Change System.

Lubricant	ARI Part #	Manufacturer	Manufacturer's Part #
Lube-A-Cyl	51120	Parker	0766130000
White Lithium Grease	91504-P1037	Century Lubricants	ST-80
Staburags NBU 30 Grease	0903-P11N	Klüber	NBU 30
White EP Bearing Grease	96503-P1018	Dow Corning	White EP Bearing Grease

Table 8.1.1-1. Approved Lubricants

8.1.1.1 Robot Adaptor

- 1. Clean the latching cams, locating/alignment pins, and driver/washer to ensure all existing grease, dirt, and debris is removed.
- 2. Apply a liberal coating of white lithium grease to the contact surfaces on the three (3) latching cams, the cylindrical surfaces of the locating/alignment pins, and the contact surfaces between the latching cams and driver, as shown in Figure 8.1.1.1-1 and Figure 8.1.1.1-2 with the surfaces highlighted blue.

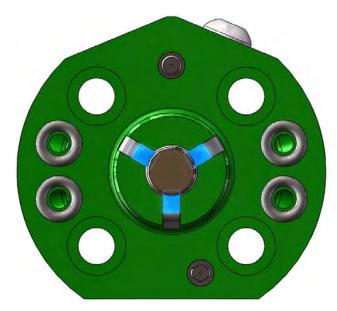



Figure 8.1.1.1-1. E31.5 Robot Adaptor Lubrication – Locating Pins & Cams

Figure 8.1.1.1-2. E31.5 Robot Adaptor Lubrication – Cams & Washer

8.1.1.2 Tool Adaptor

- 1. Clean the inner surface of the tool ring, the locating/alignment bushings, and the latching surfaces to ensure all existing grease, dirt, and debris is removed.
- 2. Apply a liberal coating of white lithium grease to the latching surfaces and to the inner surface of the locating/alignment bushings, as shown in Figure 8.1.1.2-1 with the surfaces highlighted blue.

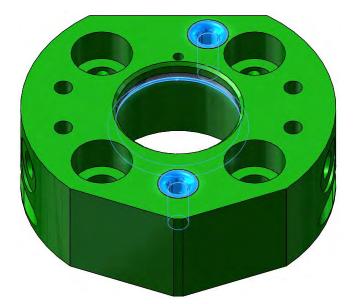


Figure 8.1.1.2-1. ET31.5 Tool Adaptor Lubrication

8.1.2 Visual Checks

Periodic visual checks of the E31.5 Tool Changer provide early detection of breakage or wearing components.

8.1.2.1 Robot Adaptor

- 1. The latching cams and locating/alignment pins should be inspected for proper lubrication as defined in Section 8.1.1.1.
- 2. Inspect the latching cams and locating/alignment pins for rust, breakage, or wear³.
- 3. Inspect the Robot Adaptor mating surface for raised material⁴ or dings that could prevent proper mating to the Tool Adaptor.
- 4. Uncouple the Robot Adaptor from the Tool Adaptor and cycle the coupling mechanism several times to verify the latching cams are operating smoothly. The cycling of the coupling mechanism will also ensure that the operating cylinder remains properly lubricated.

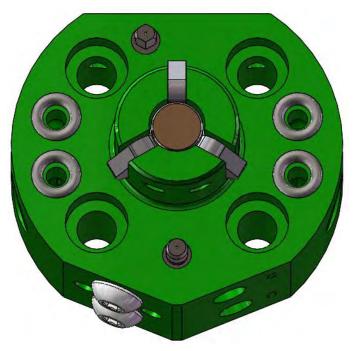


Figure 8.1.2.1-1. E31.5 Robot Adaptor Visual Inspection

⁴ All raised material should be filed smooth.

³ If excessive wear is found on the locating/alignment pins, latching cams, or Robot Adaptor mating surface, review the docking and undocking sequence of the robot program and adjust if necessary.

8.1.2.2 Tool Adaptor

- 1. The locating/alignment bushings and the latching surfaces should be inspected for proper lubrication as defined in Section 8.1.1.2.
- 2. Inspect the latching surfaces and locating/alignment bushings for rust, breakage, or wear⁵.
- 3. Inspect the Tool Adaptor mating surface for raised material⁶ or dings that could prevent proper mating to the Robot Adaptor.

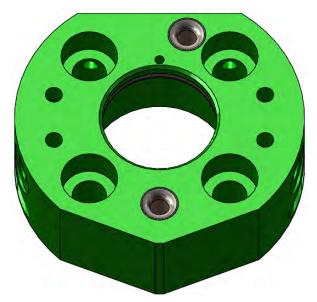


Figure 8.1.2.2-1. ET31.5 Tool Adaptor Visual Inspection

8.1.3 Checking Wear of the Cam Locking Mechanism

In the unlikely event that the Epsilon Tool Changer begins to demonstrate signs of wear in the cam locking mechanism, causing the connection between the Robot Adaptor and Tool Adaptor to lose repeatability and precision, the following can be used to check the wear of the locking mechanism.

- 1. Remove the Robot Adaptor from the Robot/Manipulator.
- 2. Remove the Tool Adaptor from the Tool.
- 3. Remove the face seals from the Robot Adaptor.
- 4. With the adaptors positioned on a workbench, inspect the mating surfaces of the Robot (Figure 8.1.3-1) and Tool (Figure 8.1.3-2) Adaptor for any raised material. If any raised material is found, file it smooth before proceeding.

⁶ All raised material should be filed smooth.

⁵ If excessive wear is found on the locating/alignment bushings, latching surfaces, or Tool Adaptor mating surface, review the docking and undocking sequence of the robot program and adjust if necessary.

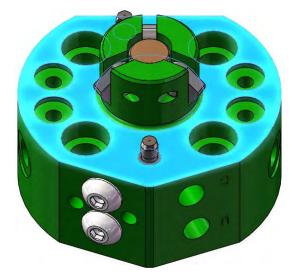


Figure 8.1.3-1. Robot Adaptor – Raised Material Inspection

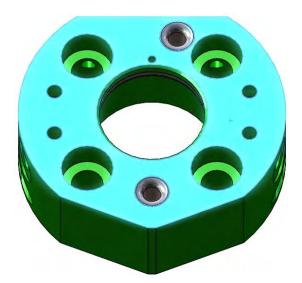


Figure 8.1.3-2. Tool Adaptor – Raised Material Inspection

- 5. Connect the couple and uncouple actuation port lines (Figure 5.3-1) so that the locking mechanism can be manually actuated.
- 6. With the cams retracted (Figure 6.1-2), position the Robot Adaptor and Tool Adaptor so that they can be coupled together.
- 7. Place a 0.05mm piece of shim stock at the locations shown in Figure 8.1.3-3, one location at a time.
- 8. Actuate the cams to couple the Robot Adaptor to the Tool Adaptor (Figure 6.1-1).
- 9. With a slight tug, check if the piece of shim stock is securely clamped between the Robot Adaptor and Tool Adaptor interface surfaces.
- 10. Uncouple the Robot Adaptor from the Tool Adaptor.
- 11. Repeat steps 6 through 9 for each location shown in Figure 8.1.3-3.

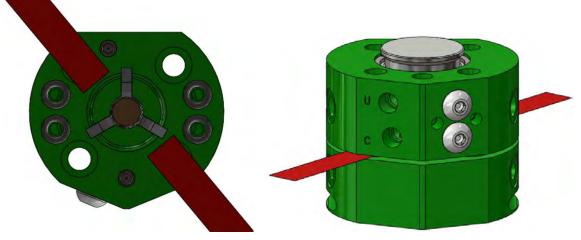


Figure 8.1.3-3. Shim Test of the Cam Locking Mechanism

If the piece of shim stock is able to be pulled free from the coupling interface while the cams are actuated (Figure 6.1-1), record the serial number of the Robot Adaptor and Tool Adaptor and contact APPLIED ROBOTICS Technical Support Department at (518) 384-1000 or techsupport@appliedrobotics.com.

SPARE PARTS

The spare parts listed below are recommended to be maintained in stock for the life of the Tool Changer. These quantities are based on a single unit. If higher quantities are purchased, please contact the Technical Support Department at (518) 384-1000 or <u>techsupport@appliedrobotics.com</u> to determine the quantity of spares recommended for the size of your installation.

Table 9-1. Robot Adaptor Spare Parts

ROBOT ADAPTOR			
Description	Part Number	Quantity	
PIN, ALIGNMENT, MXC5	1004-P67N	1	
PIN, ALIGNMENT, DIAMOND MXC5	1004-P68N	1	
SUBASSY, PNP MODULE ER31.5 (Optional)	1507-D69A	1	
O-RING, .145 ID X .07 70VT	96504-P1019	4	

Table 9-2. Tool Adaptor Spare Parts

TOOL ADAPTOR		
Description	Part Number	Quantity
RING, CAM RETAINER ET31.5	1507-C76N	1
BUSHING, 6MM O.D.	49429	2

9

10 SPARE PARTS REPLACEMENT

The following procedures explain the correct method for removing and replacing the recommended spare parts listed in Section 9 of this manual.

10.1 ROBOT ADAPTOR

10.1.1 Locating/Alignment Pins

- 1. Remove the Robot Adaptor from the Robot/Manipulator.
- 2. Using a punch, press the Locating Pin(s) out through the front face of the Robot Adaptor Housing.
- 3. Apply a liquid adhesive to the Locating Pin(s) before pressing into housing.
- 4. Press the new Locating Pin(s) into the appropriate mounting hole (Figure 10.1.1-1) until the pin is fully seated at the bottom of the hole.
- 5. Lubricate Locating Pin per Section 8.1.1.1.

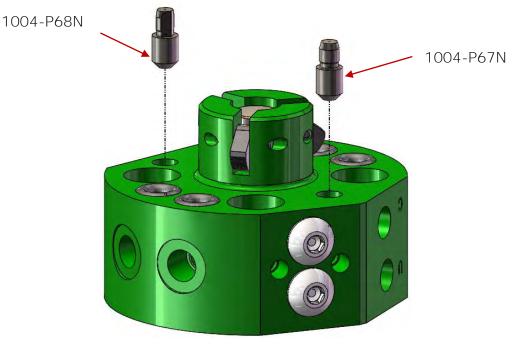


Figure 10.1.1-1. Locating/Alignment Pin Replacement

10.1.2 Couple/Uncouple Sensing Module (Optional Feature)

- 1. Remove the module (1507-D69A).
- 2. Loosen the M3 flat head socket cap screws holding the Sensing Module using a 2.5mm allen wrench.
- 3. Remove the Sensing Module and either discard or send to APPLIED ROBOTICS for repair.
- 4. Replace unit with another Sensing Module.
- 5. Ensure that the cavity in the Robot Adaptor Housing holding the Sensing Module is free of all foreign objects.
- 6. Ensure that the two (2) o-rings (97501-P1084) for the proximity sensors, supplied with the Sensing Module, are properly positioned.
- 7. Apply Loctite 242, or equivalent, to the threads of the flat head socket cap screws before installing.
- 8. Install the new Sensing Module using the flat head socket cap screws.
- 9. Prior to coupling the Tool Changer, cycle the actuating cylinder for the Robot Adaptor several times to ensure that the sensors are working properly and the correct inputs are being received by the robot controller.

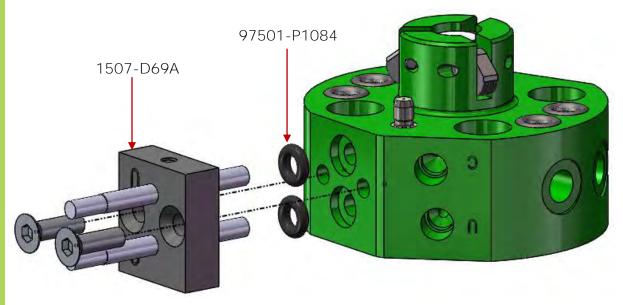


Figure 10.1.2-1. Couple/Uncouple Sensing (Optional) Module Replacement

MAKING CONNECTIONS WHILE UNDER POWER COULD RESULT IN DAMAGE TO THE EQUIPMENT. TO AVOID DAMAGING EQUIPMENT, ENSURE THAT ALL CABLES ARE CONNECTED BEFORE SUPPLYING POWER TO THE EQUIPMENT.

10.2 TOOL ADAPTOR

10.2.1 Locking Ring

- 1. Remove the Tool Adaptor from the Tool.
- 2. Remove the M3 socket head set screws (48417) using a 1.5mm allen wrench.
- 3. Remove the Locking Ring (96503-B1054) from the Tool Adaptor.
- 4. Place new Locking Ring into the Tool Adaptor.
- 5. Apply Loctite 222, or equivalent, to M3 socket head set screws removed in step 2 (clean threads before applying thread locker) and screw into the Tool Adaptor Housing.
- 6. Lubricate Latching Dowels per Section 8.1.1.2.

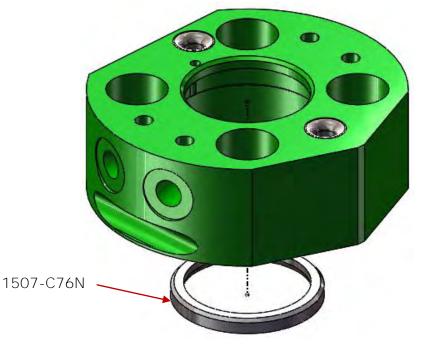


Figure 10.2.1-1. Latching Dowel

10.2.2 Locating Bushing

- 1. Remove the Tool Adaptor from the Tool.
- 2. Press out the Locating Bushings (49429) from the bottom of the Tool Adaptor Housing.
- 3. Press in new Locating Bushings from the top of the Tool Adaptor Housing until it is just below the Tool Adaptor Housing surface. Ensure that the rounded edge of the Locating Bushing faces the top surface of the Tool Adaptor Housing.
- 4. Lubricate the Locating Bushing per Section 8.1.1.2.

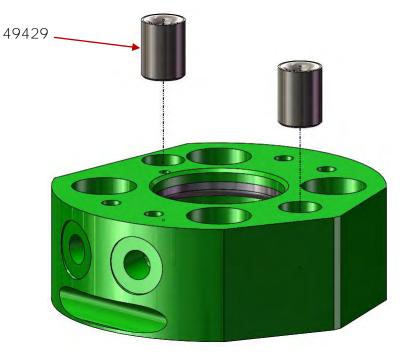
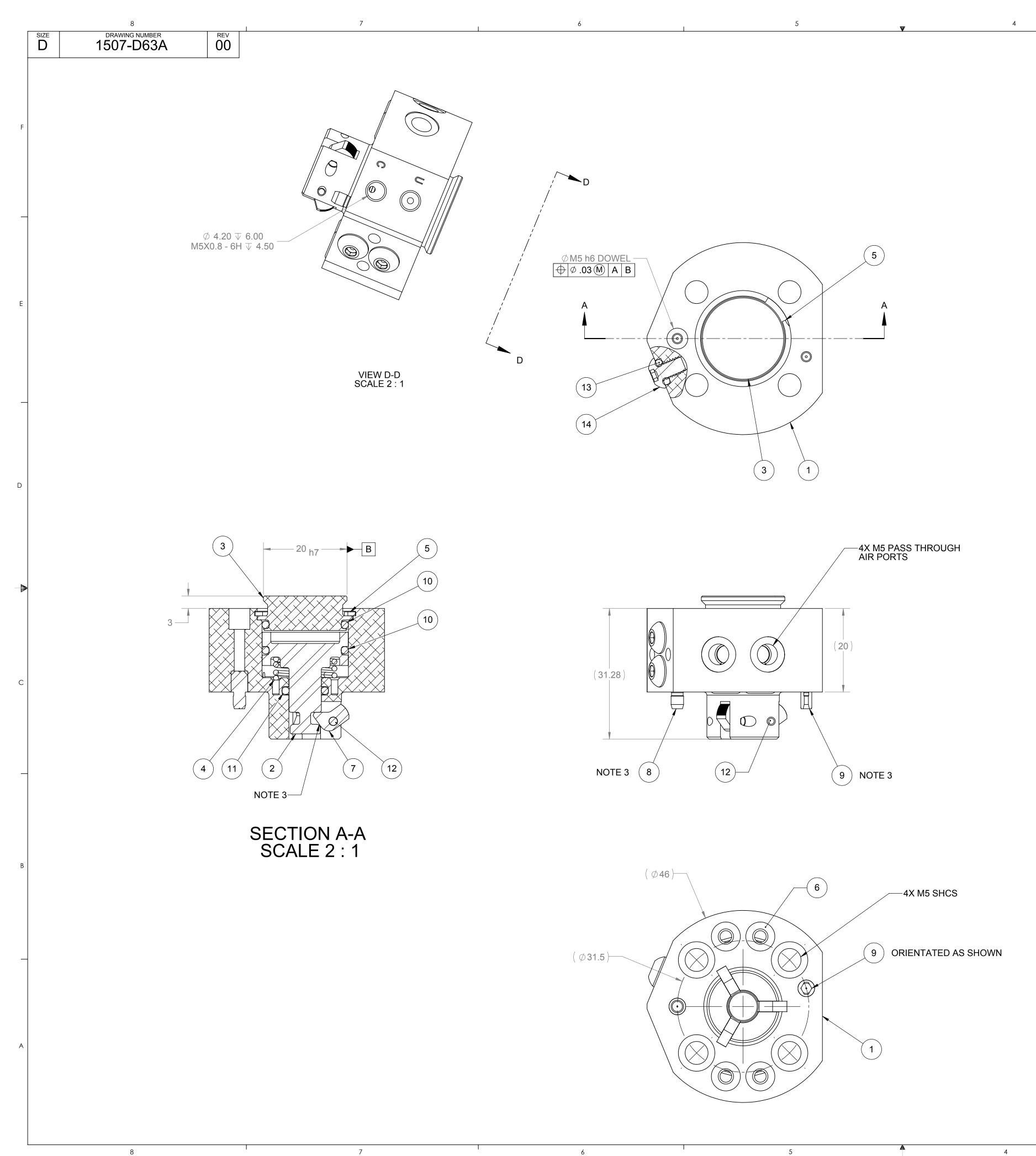
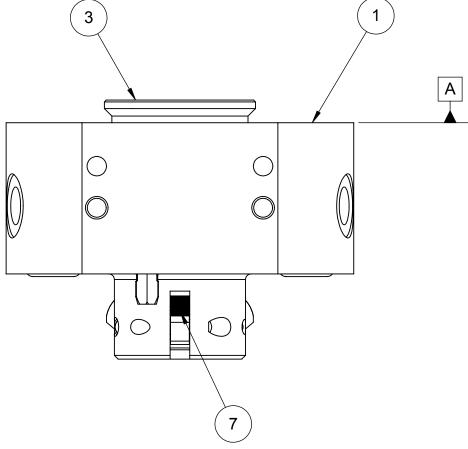


Figure 10.2.2-1. Locating Bushing Replacement




11 INFORMATIONAL DRAWINGS

The drawings in this section can assist with installation, use and identification of replacement parts for the Epsilon Tool Changer. Please contact **APPLIED ROBOTICS Technical Support** if you have any questions.

DRAWING NUMBER	DESCRIPTION
1507-D63A	ER31.5-N/A-020-N-0-C0000
1507-D67A	ET31.5-022-N-C0000

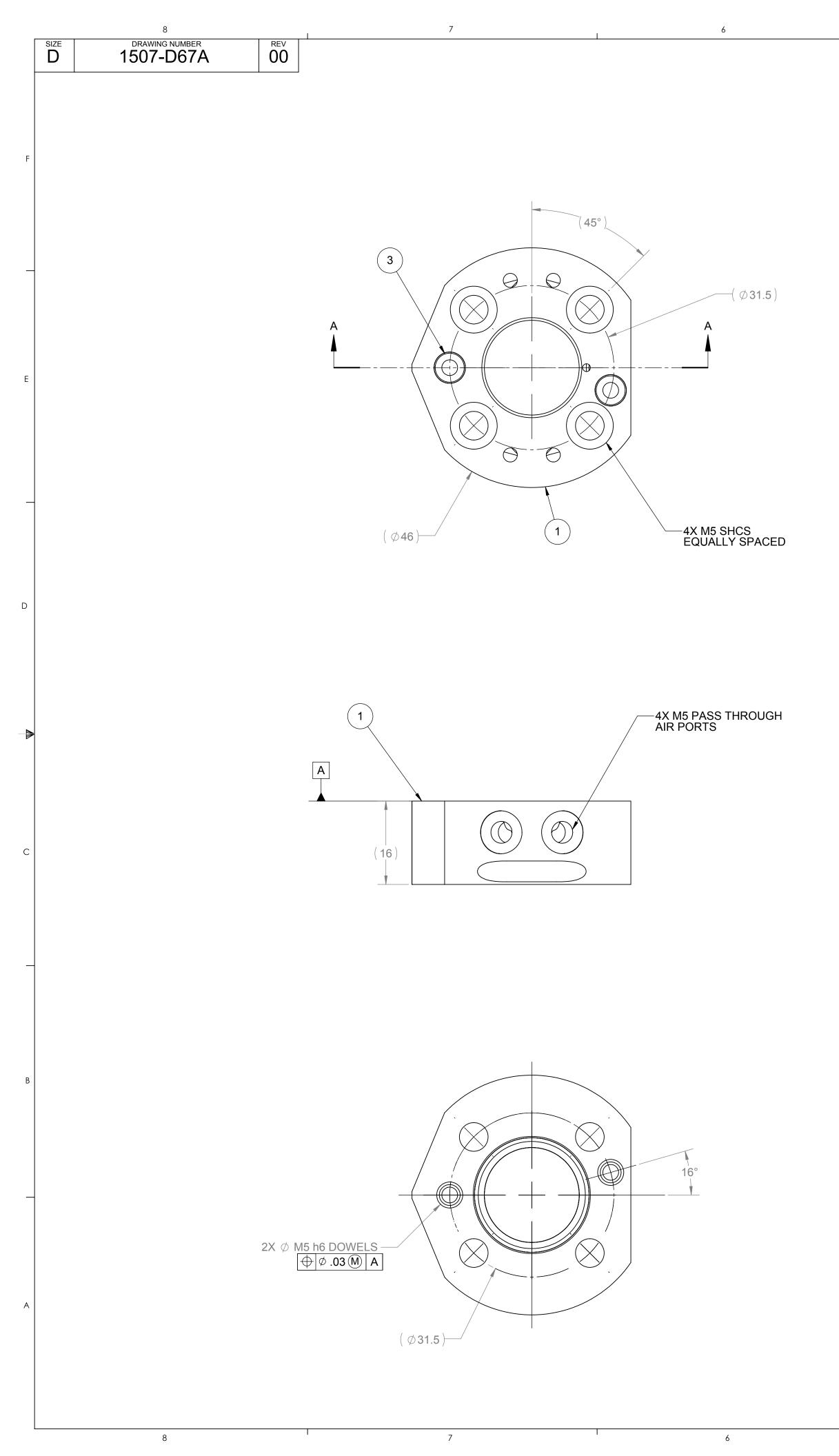
PRINT DATE 3/31/2016

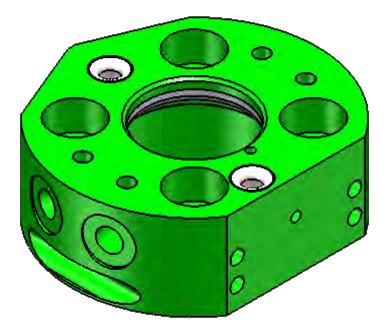

3

	2			1	
	REVISIONS				
EV	DESCRIPTION	DR	СНК	DATE	ECR/ESR NO.
00	RELEASE FOR MANUFACTURE.	JV	SA	3/30/2016	EMIN-87JKUZ

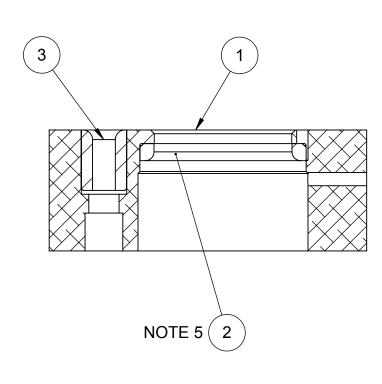
F

D


С

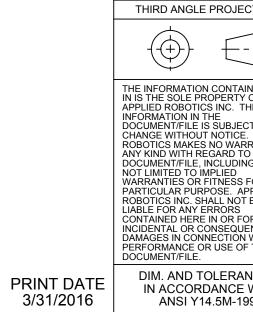

NOTES:

- ALL PARTS TO RECEIVE LOCTITE ARE TO BE THOROUGHLY CLEANED FROM GREASE AND OIL.
 ALL SURFACES OR O-RINGS THAT RECEIVE LUBE-A-CYL (51120) APPLY ONLY A THIN FILM. ITEMS 14 18.
 APPLY LITHIUM GREASE, ARI #91504-P1037.
 APPLY LOCTITE 222, ARI #86005-P1020.
 APPLY LOCTITE 271, ARI #86005-P1304.
 TORQUE TO 18 IN/LBS.


		14	2	47003	SCR, BUT HD		D SOC CAP M4 X 6(SS)					
		13	2	97501-F	°1084	O-RING, .070	ID X .070 (P)					
		12	3	49989		DOWEL, M2	X 8 SS M6					
		11	1	89501-F	°1096	O-RING, .301	ID X .07 70 BUNA (P)					
		10	2	91500-F	°1032	O-RING, .676	ID X .07 70					
		9	1	1004-P6	8N	PIN, ALIGNM	ENT, DIAMOND MXC5					
		8	1	1004-P6	67N	PIN, ALIGNM	ENT, MXC5					
		7	3	0104-C1	18N	CAM, MXC5N	1-02M3					
6 4				96504-F	P1019	O-RING, .145 ID X .07 70VT (P)						
		5	1	1507-P7	7N	N RING, RETAINING						
	4 1 1502-P94 3 1 1507-C66				94N	SPRING, COMPRESSION 15.24MM OD X 12						
					6N CAP, ROBOT ER31.5 20mm HUB							
2 1 1507-C6				1507-C6	35N	PISTON, RO	N, ROBOT ER31.5					
	1 1 1507-D6			HOUSING, ROBOT ER31.5								
		ITEM NO.	QTY	PAR	T NO.		DESCRIPTION					
	THIRD ANGLE PROJECTION	N	IETF	RIC	DR: J.	VALLELUNGA						
		S	PECIFI	IERWISE IED: MS ARE BASIC		ATKINS	Applied Robotics™ Solutions in reach					
	THE INFORMATION CONTAINED HERE IN IS THE SOLE PROPERTY OF		.25 A			BEST	648 Saratoga Rd. Glenville, NY 12302 www.appliedrobotics.com					
	APPLIED ROBOTICS INC. THE INFORMATION IN THE DOCUMENT/FILE IS SUBJECT TO CHANGE WITHOUT NOTICE. APPLIED	φØ.	25M	A B C	QC: M	. DUDNATH	TITLE:					
	ROBOTICS MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THIS DOCUMENT/FILE, INCLUDING, BUT NOT LIMITED TO IMPLIED WARRANTIES OR FITNESS FOR A PARTICULAR PURPOSE. APPLIED ROBOTICS INC. SHALL NOT BE LIABLE FOR ANY ERRORS		NAL RADII SES TO BE	ERS +/- 0.25 & BROKEN . 1338 ISHES 1.6Ra	3D MODEL 1507-D63A		ER31.5-N/A-020-N-0-C0000					
	CONTAINED HERE IN OR FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH THE PERFORMANCE OR USE OF THIS DOCUMENT/FILE.	MAT'L: -			SCALE: 2: DO NOT SC	:1 :Ale drawing						
Ξ	DIM. AND TOLERANCING IN ACCORDANCE WITH ANSI Y14.5M-1994	SURFACE	E TREATI	MENT:		O 9001 ISTERED	D 1507-D63A 00 WEIGHT: 0.09 kg RoHs COMPLIANT: - SHT.] OF 1					

3

4


5

5

A

4

3

	2			1	
	REVISIONS				
REV	DESCRIPTION	DR	СНК	DATE	ECR/ESR NO.
00	RELEASE FOR MANUFACTURE.	JV	SA	3/30/2016	EMIN-87JKUZ

1

F

Ε

D

С

В

2

NOTES:

- ALL PARTS TO RECEIVE LOCTITE ARE TO BE THOROUGHLY CLEANED FROM GREASE AND OIL.
 ALL SURFACES OR O-RINGS THAT RECEIVE LUBE-A-CYL (51120) APPLY ONLY A THIN FILM. ITEMS 14 18.
 APPLY LITHIUM GREASE, ARI #91504-P1037.
 APPLY LOCTITE 222, ARI #86005-P1020.
 APPLY LOCTITE 271, ARI #86005-P1304.
 TORQUE TO 18 IN/LBS.

3 2 2 1			2	49429		BUSHING, 6MM O.D.						
			1507-C76N 1507-D68N		RING, CAM RETAINER ET31.5 HOUSING, TOOL ET31.5							
1 1												
		ITEM NO.	QTY	Y PART NO.		DESCRIPTION						
IECTION	ME	TRIC		DR: J. VALLELUNG	BA A	~						
	UNLESS OTHERWISE SPECIFIED:			CHK: S. ATKINS		Applied Robor				S		
			E BASIC	ENG: J. DELMONACO		Solutions in reach						
TAINED HERE TY OF THE	.25	AB	2	MFG: C. BEST		648 Saratoga Rd. Glenville, NY 12302 www.appliedrobotics.com						
ECT TO	⊕ Ø .25 N) A В	С	QC: M. DUDNATH		TITLE:						
CE. APPLIED ARRANTY OF TO THIS DING, BUT IS FOR A APPLIED DT BE S	ALL HOLE DIAMETERS +/- 0.25 INTERNAL RADII & BROKEN EDGES TO BE .1338 ALL SURFACE FINISHES 1.6Ra			3D MODEL NUMBER: 1507-D67A		ET31.5-22.5-N-C0000						
FOR QUENTIAL ON WITH THE OF THIS	MAT'L: -			SCALE: 2:1 DO NOT SCALE DRAWING		SIZE						
	SURFACE TREATMENT:			ISO 9001 REGISTERED		D		1507-D67A		00		
1994						WEIGHT: ().04 kg	RoHs COMPLIANT: -	SHT.]	of 1		
2								1				